Algorithms Summary
算法 trick 的记录。 系列前作:https://www.luogu.com.cn/article/yc9w22em 拆贡献!拆贡献!交换维度!交换维度!时间逆流!时间逆流!操作顺序反演!操作顺序反演!递推!递推!分离常量!分离常量!不同的项分开算! 优化一些代数式计算的复杂度时,最简单常用的技巧就是试着拆开,然后分离常量和变量,将不同类项分开处理。而当你推不出一些式子时,可以放弃推式子而使用递推。交换求和顺序/交换 DP 转移顺序/维度是破解循环依赖,找到好的计算顺序的方法,这和拆贡献是相关的:拆贡献其实就是变换了统计的第一维度。从按照整体的统计变成按照单个元素统计。 双指针就是“在不合法和不优之间的境界线上游走”,同时也是“一种扫描线”,并且是“在复杂度允许的情况下,枚举一定量信息以确定更多条件”的体现。 而“枚举一定量信息”在 DP 中也很常用。DP 的经典套路就是随便乱设状态,加入信息直到能够转移为止,然后利用种种洞察和优化去掉一部分维度,优化转移直到时空复杂度达标。 在做任何题的时候,第一步考虑性质刻画。无论是操作的性质还是维护信息的性质。性质就是限制,能够帮你找出正解。 一个好的性质刻画也很重要。一个愚蠢的性质刻画会极大地妨碍你做题。所以如果你觉得性质刻画太笨,就试着简化。 “信息学”的本质就是对于信息的处理。算法对于复杂度的优化本质上是减少不必要的对信息的处理(计算)。所以当你试图确定复杂度或者优化复杂度时,不妨思考一下“这个题,至少需要处理哪些信息?如何避免处理不必要的信息?” 信息即向量,操作即矩阵。 写了线性代数大学习,你应当能知道这点。有许多操作都是线性/仿射的,可以写成矩阵。从而拥有结合性,可以用快速幂或者线段树等方法处理。 孤链压缩权值线段树/01 trie。线性空间复杂度,从此整数可重集再也不用平衡树。 线性筛线性预处理积性数论函数。要点在于筛 n = i * p 时用到的 p 和 i 满足 p 不大于 i 的最小质因子。比埃筛更好写。 以后再也不要 naive 地 $O(n \log n)$ 算 d(i) 了。 利用单调性等等贪心性质简化问题。 有交不优 => 钦定末尾。 有时二维问题按第一维排序,而后第二维更小就一定更优所以无脑排除一些。剩下的就满足二维偏序(相当于利用贪心性质额外制造了一个维度上的单调性。这里的贪心性质是“a 被 b 包含 => b 的所有解都不劣于 a 的对应解/a 能干的所有 b 都能干”) 两种证明贪心的策略: 局部上,交换论证/调整法:调整一定能导出不劣的解。 整体上,必要性 => 充分性:我们至少需要多少操作,然后让这些操作发挥最大的效益。 增量更新并不要求旧的答案一定是新的答案。在旧答案总数很小时,可以暴力枚举它们判断它们是否是新的答案。或者,如果容易确定哪些不是新的答案,排除它们即可。 对于一些非常复杂的操作,可以考虑寻找不变量。常见的不变量常常和奇偶性或者两类元素的差有关。因为总和是容易变的,但是有时对于两类东西的作用是相同的,就可以被作差消去。 当操作是对两个相邻元素(或者类似的,一个元素附近的几个元素)时,这样的关于奇偶性或者奇偶下标的元素的差的不变量比较容易出现。 不变量和另一种思想紧密相关,即状态而非过程。在很多贪心或者博弈论的题中,常常有复杂的流程模拟,直接陷进去就做不出来了。 这时可以考虑最终状态或者解的性质,有时能够得到非常简洁优雅的结果。就像解方程一样。 ...